Comparative Analysis of <i>Felixounavirus</i> Genomes Including Two New Members of the Genus That Infect <i>Salmonella</i> Infantis

oleh: Rocío Barron-Montenegro, Rodrigo García, Fernando Dueñas, Dácil Rivera, Andrés Opazo-Capurro, Stephen Erickson, Andrea I Moreno-Switt

Format: Article
Diterbitkan: MDPI AG 2021-07-01

Deskripsi

<i>Salmonella</i> spp. is one of the most common foodborne pathogens worldwide; therefore, its control is highly relevant for the food industry. Phages of the <i>Felixounavirus</i> genus have the characteristic that one phage can infect a large number of different <i>Salmonella</i> serovars and, thus, are proposed as an alternative to antimicrobials in food production. Here, we describe two new members of the <i>Felixounavirus</i> genus named vB_Si_35FD and vB_Si_DR94, which can infect <i>Salmonella</i> Infantis. These new members were isolated and sequenced, and a subsequent comparative genomic analysis was conducted including 23 publicly available genomes of <i>Felixounaviruses</i> that infect <i>Salmonella</i>. The genomes of vB_Si_35FD and vB_Si_DR94 are 85,818 and 85,730 bp large and contain 129 and 125 coding sequences, respectively. The genomes did not show genes associated with virulence or antimicrobial resistance, which could be useful for candidates to use as biocontrol agents. Comparative genomics revealed that closely related <i>Felixounavirus</i> are found in distinct geographical locations and that this genus has a conserved genomic structure despite its worldwide distribution. Our study revealed a highly conserved structure of the phage genomes, and the two newly described phages could represent promising biocontrol candidates against <i>Salmonella</i> spp. from a genomic viewpoint.