Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
<i>Ganoderma boninense</i> Disease Detection by Near-Infrared Spectroscopy Classification: A Review
oleh: Mas Ira Syafila Mohd Hilmi Tan, Mohd Faizal Jamlos, Ahmad Fairuz Omar, Fatimah Dzaharudin, Suramate Chalermwisutkul, Prayoot Akkaraekthalin
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-04-01 |
Deskripsi
<i>Ganoderma boninense</i> (<i>G. boninense</i>) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of <i>G. boninense</i> is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early <i>G. boninense</i> detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including <i>G. boninense</i>, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of <i>G. boninense</i> in the future.