Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine

oleh: Ellis Ruth D, Duan Junhui, Niangaly Amadou, Dicko Alassane, Sagara Issaka, Saye Renion, Takala-Harrison Shannon, Mu Jianbing, Ouattara Amed, Miller Louis H, Su Xin-zhuan, Plowe Christopher V, Doumbo Ogobara K

Format: Article
Diterbitkan: BMC 2010-06-01

Deskripsi

<p>Abstract</p> <p>Background</p> <p>Extensive genetic diversity in vaccine antigens may contribute to the lack of efficacy of blood stage malaria vaccines. Apical membrane antigen-1 (AMA1) is a leading blood stage malaria vaccine candidate with extreme diversity, potentially limiting its efficacy against infection and disease caused by <it>Plasmodium falciparum </it>parasites with diverse forms of AMA1.</p> <p>Methods</p> <p>Three hundred Malian children participated in a Phase 2 clinical trial of a bivalent malaria vaccine that found no protective efficacy. The vaccine consists of recombinant AMA1 based on the 3D7 and FVO strains of <it>P. falciparum </it>adjuvanted with aluminum hydroxide (AMA1-C1). The gene encoding AMA1 was sequenced from <it>P. falciparum </it>infections experienced before and after immunization with the study vaccine or a control vaccine. Sequences of <it>ama1 </it>from infections in the malaria vaccine and control groups were compared with regard to similarity to the vaccine antigens using several measures of genetic diversity. Time to infection with parasites carrying AMA1 haplotypes similar to the vaccine strains with respect to immunologically important polymorphisms and the risk of infection with vaccine strain haplotypes were compared.</p> <p>Results</p> <p>Based on 62 polymorphic AMA1 residues, 186 unique <it>ama1 </it>haplotypes were identified among 315 <it>ama1 </it>sequences that were included in the analysis. Eight infections had <it>ama1 </it>sequences identical to 3D7 while none were identical to FVO. Several measures of genetic diversity showed that <it>ama1 </it>sequences in the malaria vaccine and control groups were comparable both at baseline and during follow up period. Pre- and post-immunization <it>ama1 </it>sequences in both groups all had a similar degree of genetic distance from FVO and 3D7 <it>ama1</it>. No differences were found in the time of first clinical episode or risk of infection with an AMA1 haplotype similar to 3D7 or FVO with respect to a limited set of immunologically important polymorphisms found in the cluster 1 loop of domain I of AMA1.</p> <p>Conclusion</p> <p>This Phase 2 trial of a bivalent AMA1 malaria vaccine found no evidence of vaccine selection or strain-specific efficacy, suggesting that the extreme genetic diversity of AMA1 did not account for failure of the vaccine to provide protection.</p>