Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On the Loop Homology of a Certain Complex of RNA Structures
oleh: Thomas J. X. Li, Christian M. Reidys
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-07-01 |
Deskripsi
In this paper, we establish a topological framework of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>-structures to quantify the evolutionary transitions between two RNA sequence–structure pairs. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>-structures developed here consist of a pair of RNA secondary structures together with a non-crossing partial matching between the two backbones. The loop complex of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>-structure captures the intersections of loops in both secondary structures. We compute the loop homology of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>-structures. We show that only the zeroth, first and second homology groups are free. In particular, we prove that the rank of the second homology group equals the number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> of certain arc-components in a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>-structure and that the rank of the first homology is given by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>−</mo><mi>χ</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula> is the Euler characteristic of the loop complex.