Synthesis, Crystal Structure and Properties of the New Laminar Quaternary Tellurides Sr<i>Ln</i>CuTe<sub>3</sub> (<i>Ln</i> = Sm, Gd–Tm and Lu)

oleh: Anna V. Ruseikina, Maxim V. Grigoriev, Maxim S. Molokeev, Alexander A. Garmonov, Andrey V. Elyshev, Ralf J. C. Locke, Thomas Schleid

Format: Article
Diterbitkan: MDPI AG 2023-02-01

Deskripsi

This paper reports for the first time on the new laminar quaternary orthorhombic heterometallic quaternary tellurides Sr<i>Ln</i>CuTe<sub>3</sub>, the fabrication of which has been a challenge until this work. Data on the crystal structure of tellurides complete the series of quaternary strontium chalcogenides Sr<i>Ln</i>Cu<i>Ch</i><sub>3</sub> (<i>Ch</i> = S, Se, Te). Single crystals of the compounds were synthesized from the elements by the halogenide-flux method at 1070 K. The compounds are crystallizing in two space groups <i>Pnma</i> (<i>Ln</i> = Sm, Gd and Tb) and <i>Cmcm</i> (<i>Ln</i> = Dy–Tm and Lu). For SrSmCuTe<sub>3</sub> (<i>a</i> = 11.4592(7), <i>b</i> = 4.3706(3), <i>c</i> = 14.4425(9) Å, space group: <i>Pnma</i>) with the largest lanthanoid cation, Sr<sup>2+</sup> shows <i>C.N.</i> = 7, whereas Sm<sup>3+</sup> reveals a diminished coordination number <i>C.N.</i> = 6. For SrLuCuTe<sub>3</sub> (<i>a</i> = 4.3064(3), <i>b</i> = 14.3879(9), <i>c</i> = 11.1408(7) Å, space group: <i>Cmcm</i>) with the smallest lanthanoid cation, coordination numbers of six are realized for both high-charged cations (Sr<sup>2+</sup> and Lu<sup>3+</sup>: <i>C.N.</i> = 6). The cations Sr<sup>2+</sup>, <i>Ln</i><sup>3+</sup>, Cu<sup>+</sup> each take independent positions. The structures are built by distorted [CuTe<sub>4</sub>]<sup>7–</sup> tetrahedra, forming the infinite chains <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mmultiscripts><mo stretchy="false">{</mo><mo>∞</mo><mn>1</mn></mmultiscripts><mrow><msup><mrow><mrow><mo stretchy="false">[</mo><mrow><mi>Cu</mi><msubsup><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>1</mn></mrow><mi mathvariant="normal">t</mi></msubsup><msubsup><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>1</mn></mrow><mi mathvariant="normal">t</mi></msubsup><msubsup><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow><mi mathvariant="normal">e</mi></msubsup></mrow><mo stretchy="false">]</mo></mrow></mrow><mrow><mn>5</mn><mo>−</mo></mrow></msup></mrow><mo stretchy="false">}</mo></mrow></mrow></mrow></semantics></math></inline-formula> along [010] in Sr<i>Ln</i>CuTe<sub>3</sub> (<i>Ln</i> = Sm, Gd and Tb) and [100] in Sr<i>Ln</i>CuTe<sub>3</sub> (<i>Ln</i> = Dy–Tm and Lu). The distortion of the polyhedra [CuTe<sub>4</sub>]<sup>7–</sup> was compared for the whole series Sr<i>Ln</i>CuTe<sub>3</sub> by means of τ<sub>4</sub>-descriptor for the four coordinating Te<sup>2–</sup> anions, which revealed a decrease in the degree of distortion with a decreasing radius at <i>Ln</i><sup>3+</sup>. The distorted octahedra [<i>Ln</i>Te<sub>6</sub>]<sup>9–</sup> form layers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mmultiscripts><mo stretchy="false">{</mo><mo>∞</mo><mn>2</mn></mmultiscripts><mrow><msup><mrow><mrow><mo stretchy="false">[</mo><mrow><mi>L</mi><mi>n</mi><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow><mo stretchy="false">]</mo></mrow></mrow><mrow><mn>3</mn><mo>−</mo></mrow></msup></mrow><mo stretchy="false">}</mo></mrow></mrow></mrow></semantics></math></inline-formula>. The distorted octahedra and tetrahedra fuse to form parallel layers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mmultiscripts><mo stretchy="false">{</mo><mo>∞</mo><mn>2</mn></mmultiscripts><mrow><msup><mrow><mrow><mo stretchy="false">[</mo><mrow><mi>Cu</mi><mi>L</mi><mi>n</mi><msub><mrow><mi>Te</mi></mrow><mn>3</mn></msub></mrow><mo stretchy="false">]</mo></mrow></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msup></mrow><mo stretchy="false">}</mo></mrow></mrow></mrow></semantics></math></inline-formula> and between them, the Sr<sup>2+</sup> cations providing three-dimensionality of the structure are located. In the Sr<i>Ln</i>CuTe<sub>3</sub> (<i>Ln</i> = Sm, Gd and Tb) structures, the Sr<sup>2+</sup> cations center capped the trigonal prisms [SrTe<sub>6+1</sub>]<sup>12−</sup>, united in infinite chains <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mrow><mmultiscripts><mo stretchy="false">{</mo><mo>∞</mo><mn>1</mn></mmultiscripts><mrow><msup><mrow><mrow><mo stretchy="false">[</mo><mrow><mi>Sr</mi><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow></msub><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>2</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>3</mn><mo>/</mo><mn>3</mn></mrow></msub><msub><mrow><mrow><mo>(</mo><mrow><mi>Te</mi><mn>3</mn></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow><mo stretchy="false">]</mo></mrow></mrow><mrow><mn>4</mn><mo>−</mo></mrow></msup></mrow><mo stretchy="false">}</mo></mrow></mrow></mrow></semantics></math></inline-formula> along the [100] direction. The domains of existence of the Ba<sub>2</sub>MnS<sub>3</sub>, BaLaCuS<sub>3</sub>, Eu<sub>2</sub>CuS<sub>3</sub> and KZrCuS<sub>3</sub> structure types are defined in the series of orthorhombic chalcogenides Sr<i>Ln</i>Cu<i>Ch</i><sub>3</sub> (<i>Ch</i> = S, Se and Te). The tellurides Sr<i>Ln</i>CuTe<sub>3</sub> (<i>Ln</i> = Tb–Er) of both structure types in the temperature range from 2 up to 300 K are paramagnetic, without showing clear signs of a magnetic phase transition.