Ensemble Learning of Multiple Deep CNNs Using Accuracy-Based Weighted Voting for ASL Recognition

oleh: Ying Ma, Tianpei Xu, Seokbung Han, Kangchul Kim

Format: Article
Diterbitkan: MDPI AG 2022-11-01

Deskripsi

More than four million people worldwide suffer from hearing loss. Recently, new CNNs and deep ensemble-learning technologies have brought promising opportunities to the image-recognition field, so many studies aiming to recognize American Sign Language (ASL) have been conducted to help these people express their thoughts. This paper proposes an ASL Recognition System using Multiple deep CNNs and accuracy-based weighted voting (ARS-MA) composed of three parts: data preprocessing, feature extraction, and classification. Ensemble learning using multiple deep CNNs based on LeNet, AlexNet, VGGNet, GoogleNet, and ResNet were set up for the feature extraction and their results were used to create three new datasets for classification. The proposed accuracy-based weighted voting (AWV) algorithm and four existing machine algorithms were compared for the classification. Two parameters, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula>, are introduced to increase the accuracy and reduce the testing time in AWV. The experimental results show that the proposed ARS-MA achieved 98.83% and 98.79% accuracy on the ASL Alphabet and ASLA datasets, respectively.