A basic problem of ( p , q ) $(p,q)$ -Bernstein-type operators

oleh: Qing-Bo Cai, Xiao-Wei Xu

Format: Article
Diterbitkan: SpringerOpen 2017-06-01

Deskripsi

Abstract In this note, we give an elaboration of a basic problem on convergence theorem of ( p , q ) $(p, q)$ -analogue of Bernstein-type operators. By some classical analysis techniques, we derive an exact class of ( p n , q n ) $(p_{n},q_{n})$ -integer satisfying lim n → ∞ [ n ] p n , q n = ∞ $\lim _{n\to\infty }[n]_{p_{n},q_{n}}=\infty$ with lim n → ∞ p n = 1 $\lim _{n\to\infty}p_{n}=1$ and lim n → ∞ q n = 1 $\lim _{n\to\infty}q_{n}=1$ under 0 < q n < p n ≤ 1 $0< q_{n}< p_{n}\leq1$ . Our results provide an erratum to corresponding results on ( p , q ) $(p,q)$ -analogue of Bernstein-type operators that appeared in recent literature.