Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Finite Element Methodology of Hybridity Nanofluid Flowing in Diverse Wavy Sides of Penetrable Cylindrical Chamber under a Parallel Magnetic Field with Entropy Generation Analysis
oleh: Fares Redouane, Wasim Jamshed, Mohamed R. Eid, Suriya Uma Devi S, Awad Musa, Sayed M. Eldin, M. Prakash, Imran Ullah
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-11-01 |
Deskripsi
In a cylindrical cavity, the convection and entropy of the hybrid nanofluid were studied. We have introduced a rectangular fin inside the cylinder; the fin temperature is at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>h</mi></msub></mrow></semantics></math></inline-formula>. The right waving wall is cooled to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>. The upper and lower walls are insulated. This study contains the induction of a constant magnetic field. The Galerkin finite element method (GFEM) is utilized to treat the controlling equations obtained by giving Rayleigh number values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math></inline-formula> (10<sup>3</sup>–10<sup>6</sup>) and Hartmann number ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>a</mi></mrow></semantics></math></inline-formula> (0, 25, 50, 100) and Darcy ranging between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>a</mi></mrow></semantics></math></inline-formula> (10<sup>−2</sup>–10<sup>−5</sup>) and the porosity ratio is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> (0.2, 0.4, 0.6, 0.8), and the size of the nanoparticles is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> (0.02, 0.04, 0.06, 0.08). The range is essential for controlling both fluid flow and the heat transport rate for normal convection. The outcomes show how Da affects entropy and leads to a decline in entropy development. The dynamic and Nusselt mean diverge in a straight line. The domain acts in opposition to the magnetic force while flowing. Highest entropy-forming situations were found in higher amounts of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>a</mi></mrow></semantics></math></inline-formula>, and initial values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mi>a</mi></mrow></semantics></math></inline-formula>. Parameters like additive nanoparticles (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>) and porosity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula>) exert diagonal dominant trends with their improving values.