Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Metal Oxide Nanostructures Enhanced Microfluidic Platform for Efficient and Sensitive Immunofluorescence Detection of Dengue Virus
oleh: Pareesa Pormrungruang, Supranee Phanthanawiboon, Sukittaya Jessadaluk, Preeda Larpthavee, Jiraphon Thaosing, Adirek Rangkasikorn, Navaphun Kayunkid, Uraiwan Waiwijit, Mati Horprathum, Annop Klamchuen, Tanapan Pruksamas, Chunya Puttikhunt, Takao Yasui, Mitra Djamal, Sakon Rahong, Jiti Nukeaw
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-10-01 |
Deskripsi
Rapid and sensitive detection of Dengue virus remains a critical challenge in global public health. This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. Utilizing a seed-assisted hydrothermal synthesis method, high-purity ZnO NRs were synthesized, characterized by their hexagonal wurtzite structure and a high surface-to-volume ratio, offering abundant binding sites for bioconjugation. Further, a comparative analysis demonstrated that the ZnO NR substrate outperformed traditional bare glass substrates in functionalization efficiency with 4G2 monoclonal antibody (mAb). Subsequent optimization of the functionalization process identified 4% (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) as the most effective surface modifier. The integration of this substrate within a herringbone-structured microfluidic platform resulted in a robust device for immunofluorescence detection of DENV-3. The limit of detection (LOD) for DENV-3 was observed to be as low as 3.1 × 10<sup>−4</sup> ng/mL, highlighting the remarkable sensitivity of the ZnO NR-integrated microfluidic device. This study emphasizes the potential of ZnO NRs and the developed microfluidic platform for the early detection of DENV-3, with possible expansion to other biological targets, hence paving the way for enhanced public health responses and improved disease management strategies.