Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Symmetric Difference Operator in Quantum Calculus
oleh: Weidong Zhao, V. Rexma Sherine, T. G. Gerly, G. Britto Antony Xavier, K. Julietraja, P. Chellamani
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-06-01 |
Deskripsi
The main focus of this paper is to develop certain types of fundamental theorems using <i>q</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mo>α</mo><mo>)</mo></mrow></semantics></math></inline-formula>, and <i>h</i> difference operators. For several higher order difference equations, we get two forms of solutions: one is closed form and another is summation form. However, most authors concentrate only on the summation part. This motivates us to develop closed-form solutions, and we succeed. The key benefit of this research is finding the closed-form solutions for getting better results when compared to the summation form. The symmetric difference operator is the combination of forward and backward difference symmetric operators. Using this concept, we employ the closed and summation form for <i>q</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mo>α</mo><mo>)</mo></mrow></semantics></math></inline-formula>, and <i>h</i> difference symmetric operators on polynomials, polynomial factorials, logarithmic functions, and products of two functions that act as a solution for symmetric difference equations. The higher order fundamental theorems of <i>q</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mo>α</mo><mo>)</mo></mrow></semantics></math></inline-formula> are difficult to find when the order becomes high. Hence, by inducing the <i>h</i> difference symmetric operator in <i>q</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mo>α</mo><mo>)</mo></mrow></semantics></math></inline-formula> symmetric operators, we find the solution easily and quickly. Suitable examples are given to validate our findings. In addition, we plot the figures to examine the value stability of <i>q</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mo>α</mo><mo>)</mo></mrow></semantics></math></inline-formula> difference equations.