Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Decay of Persistent Currents in Annular Atomic Superfluids
oleh: Klejdja Xhani, Giulia Del Pace, Francesco Scazza, Giacomo Roati
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-07-01 |
Deskripsi
We investigate the role of vortices in the decay of persistent current states of annular atomic superfluids by solving numerically the Gross–Pitaevskii equation, and we directly compare our results with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>6</mn></msup></semantics></math></inline-formula>Li experiment at LENS data. We theoretically model the optical phase-imprinting technique employed to experimentally excite finite-circulation states in the Bose–Einstein condensation regime, accounting for imperfections of the optical gradient imprinting profile. By comparing simulations of this realistic protocol to an ideal imprinting, we show that the introduced density excitations arising from imperfect imprinting are mainly responsible for limiting the maximum reachable winding number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>max</mi></msub></semantics></math></inline-formula> in the superfluid ring. We also investigate the effect of a point-like obstacle with variable potential height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> on the decay of circulating supercurrents. For a given obstacle height, a critical circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> exists, such that for an initial circulation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula> larger than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula> the supercurrent decays through the emission of vortices, which cross the superflow and thus induce phase slippage. Higher values of the obstacle height <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> further favor the entrance of vortices, thus leading to lower values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mi>c</mi></msub></semantics></math></inline-formula>. Furthermore, the stronger vortex-defect interaction at higher <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mn>0</mn></msub></semantics></math></inline-formula> leads to vortices that propagate closer to the center of the ring condensate. The combination of both these effects leads to an increase in the supercurrent decay rate for increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>w</mi><mn>0</mn></msub></semantics></math></inline-formula>, in agreement with experimental observations.