Calibrating a long-term meteoric <sup>10</sup>Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced <sup>10</sup>Be depth profiles

oleh: T. Clow, J. K. Willenbring, J. K. Willenbring, M. Schaller, J. D. Blum, M. Christl, P. W. Kubik, F. von Blanckenburg

Format: Article
Diterbitkan: Copernicus Publications 2020-12-01

Deskripsi

<p>Meteoric <span class="inline-formula"><sup>10</sup></span>Be (<span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span>) concentrations in soil profiles have great potential as a geochronometer and a tracer of Earth surface processes, particularly in fine-grained soils lacking quartz that would preclude the use of in situ produced <span class="inline-formula"><sup>10</sup></span>Be (<span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>in situ</sub></span>). One prerequisite for using this technique for accurately calculating rates and dates is constraining the delivery, or flux, of <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> to a site. However, few studies to date have quantified long-term (i.e., millennial) delivery rates, and none have determined a delivery rate for an eroding soil. In this study, we compared existing concentrations of <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>in situ</sub></span> with new measurements of <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> in eroding soils sampled from the same depth profiles to calibrate a long-term <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> delivery rate. We did so on the Pinedale (<span class="inline-formula">∼</span> 21–25 kyr) and Bull Lake (<span class="inline-formula">∼</span> 140 kyr) glacial moraines at Fremont Lake, Wyoming (USA), where age, grain sizes, weathering indices, and soil properties are known, as are erosion and denudation rates calculated from <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>in situ</sub></span>. After ensuring sufficient beryllium retention in each profile, solving for the delivery rate of <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span>, and normalizing for paleomagnetic and solar intensity variations over the Holocene, we calculate <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> fluxes of 1.46 (<span class="inline-formula">±</span>0.20) <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>6</sup></span> atoms cm<span class="inline-formula"><sup>−2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> and 1.30 (<span class="inline-formula">±</span>0.48) <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>6</sup></span> atoms cm<span class="inline-formula"><sup>−2</sup></span> yr<span class="inline-formula"><sup>−1</sup></span> to the Pinedale and Bull Lake moraines, respectively, and compare these values to two widely used <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> delivery rate estimation methods that substantially differ for this site. Accurately estimating the <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span> flux using these methods requires a consideration of spatial scale and temporally varying parameters (i.e., paleomagnetic field intensity, solar modulation) to ensure the most realistic estimates of <span class="inline-formula"><sup>10</sup></span>Be<span class="inline-formula"><sub>met</sub></span>-derived erosion rates in future studies.</p>