Exclusive Effect in Rydberg Atom-Based Multi-Band Microwave Communication

oleh: Shuhang You, Minghao Cai, Haoan Zhang, Zishan Xu, Hongping Liu

Format: Article
Diterbitkan: MDPI AG 2023-03-01

Deskripsi

We have demonstrated a Rydberg atom-based two-band communication with the optically excited Rydberg state coupled to another pair of Rydberg states by two microwave fields, respectively. The initial Rydberg state is excited by a three-color electromagnetically-induced absorption in rubidium vapor cell via cascading transitions, with all of them located in infrared bands: a 780 nm laser servers as a probe to monitor the optical transmittancy via transition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi mathvariant="normal">S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>→</mo><mn>5</mn><msub><mi mathvariant="normal">P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>, 776 nm and 1260 nm lasers are used to couple the states <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi mathvariant="normal">P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi mathvariant="normal">D</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> and states <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi mathvariant="normal">D</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>44</mn><msub><mi mathvariant="normal">F</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>. Experimentally, we show that two channel communications carried on the two microwave transitions influence each other irreconcilably, so that they cannot work at their most sensitive microwave-optical conversion points simultaneously. For a remarkable communication quality for both channels, the two microwave fields both have to make concessions to reach a common microwave-optical gain. The optimized balance for the two microwave intensities locates at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>MW</mi><mn>1</mn></mrow></msub><mo>=</mo><mn>6.5</mn><mo> </mo><mi>mV</mi><mo>/</mo><mi>cm</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>MW</mi><mn>2</mn></mrow></msub><mo>=</mo><mn>5.5</mn><mo> </mo><mi>mV</mi><mo>/</mo><mi>cm</mi></mrow></semantics></math></inline-formula> in our case. This mutual exclusive influence is theoretically well-explained by an optical Bloch equation considering all optical and microwave field interactions with atoms.