Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O<sub>3</sub> destruction
oleh: J. M. Roberts, S. Wang, S. Wang, P. R. Veres, P. R. Veres, J. A. Neuman, J. A. Neuman, M. A. Robinson, M. A. Robinson, I. Bourgeois, I. Bourgeois, I. Bourgeois, J. Peischl, J. Peischl, T. B. Ryerson, C. R. Thompson, H. M. Allen, J. D. Crounse, P. O. Wennberg, P. O. Wennberg, S. R. Hall, K. Ullmann, S. Meinardi, I. J. Simpson, D. Blake
| Format: | Article |
|---|---|
| Diterbitkan: | Copernicus Publications 2024-03-01 |
Deskripsi
<p><span id="page3422"/>Bromine activation (the production of <span class="inline-formula">Br</span> in an elevated oxidation state) promotes ozone destruction and mercury removal in the global troposphere and commonly occurs in both springtime polar boundary layers, often accompanied by nearly complete ozone destruction. The chemistry and budget of active bromine compounds (e.g., <span class="inline-formula">Br<sub>2</sub></span>, <span class="inline-formula">BrCl</span>, <span class="inline-formula">BrO</span>, <span class="inline-formula">HOBr</span>) reflect the cycling of <span class="inline-formula">Br</span> and affect its environmental impact. Cyanogen bromide (<span class="inline-formula">BrCN</span>) has recently been measured by iodide ion high-resolution time-of-flight mass spectrometry (<span class="inline-formula">I<sup>−</sup></span> CIMS), and trifluoro methoxide ion time-of-flight mass spectrometry (<span class="inline-formula">CF<sub>3</sub>O<sup>−</sup></span> CIMS) during the NASA Atmospheric Tomography Mission second, third, and fourth deployments (NASA ATom), and could be a previously unquantified participant in active <span class="inline-formula">Br</span> chemistry. <span class="inline-formula">BrCN</span> mixing ratios ranged from below the detection limit (1.5 <span class="inline-formula">pptv</span>) up to as high as 36 <span class="inline-formula">pptv</span> (10 <span class="inline-formula">s</span> average) and enhancements were almost exclusively confined to the polar boundary layers in the Arctic winter and in both polar regions during spring and fall. The coincidence of <span class="inline-formula">BrCN</span> with active <span class="inline-formula">Br</span> chemistry (often observable <span class="inline-formula">BrO</span>, <span class="inline-formula">BrCl</span> and <span class="inline-formula">O<sub>3</sub></span> loss) and high <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">CHBr</mi><mn mathvariant="normal">3</mn></msub></mrow><mo>/</mo><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">Br</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="76pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f9c2c577e80b58a3c7d171e37d26f4c3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3421-2024-ie00001.svg" width="76pt" height="14pt" src="acp-24-3421-2024-ie00001.png"/></svg:svg></span></span> ratios imply that much of the observed <span class="inline-formula">BrCN</span> is from atmospheric <span class="inline-formula">Br</span> chemistry rather than a biogenic source. Likely <span class="inline-formula">BrCN</span> formation pathways involve the heterogeneous reactions of active <span class="inline-formula">Br</span> (<span class="inline-formula">Br<sub>2</sub></span>, <span class="inline-formula">HOBr</span>) with reduced nitrogen compounds, for example hydrogen cyanide (<span class="inline-formula">HCN</span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5c3774ab0600a2f03e83f0e636ae5ed2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3421-2024-ie00002.svg" width="8pt" height="14pt" src="acp-24-3421-2024-ie00002.png"/></svg:svg></span></span><span class="inline-formula">CN<sup>−</sup></span>), on snow, ice, or particle surfaces. Competitive reaction calculations of <span class="inline-formula">HOBr</span> reactions with <span class="inline-formula">Cl<sup>−</sup></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M34" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="64e9f3179c4b320c75002019e5b7cf16"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3421-2024-ie00003.svg" width="8pt" height="14pt" src="acp-24-3421-2024-ie00003.png"/></svg:svg></span></span><span class="inline-formula">Br<sup>−</sup></span> and <span class="inline-formula">HCN</span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f77694ccc584f068782523cf5fd7b6a6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3421-2024-ie00004.svg" width="8pt" height="14pt" src="acp-24-3421-2024-ie00004.png"/></svg:svg></span></span><span class="inline-formula">CN<sup>−</sup></span> in solution, as well as box model calculations with bromine chemistry, confirm the viability of this formation channel and show a distinct pH dependence, with <span class="inline-formula">BrCN</span> formation favored at higher pH values. Gas-phase loss processes of <span class="inline-formula">BrCN</span> due to reaction with radical species are likely quite slow and photolysis is known to be relatively slow (<span class="inline-formula">BrCN</span> lifetime of <span class="inline-formula">∼</span> 4 months in midlatitude summer). These features, and the lack of <span class="inline-formula">BrCN</span> enhancements above the polar boundary layer, imply that surface reactions must be the major loss processes. The fate of <span class="inline-formula">BrCN</span> determines whether <span class="inline-formula">BrCN</span> production fuels or terminates bromine activation. <span class="inline-formula">BrCN</span> reactions with other halogens (<span class="inline-formula">Br<sup>−</sup></span>, <span class="inline-formula">HOCl</span>, <span class="inline-formula">HOBr</span>) may perpetuate the active <span class="inline-formula">Br</span> cycle; however, preliminary laboratory experiments showed that <span class="inline-formula">BrCN</span> did not react with aqueous bromide ion (<span class="inline-formula"><</span> 0.1 %) to reform <span class="inline-formula">Br<sub>2</sub></span>. Liquid-phase reactions of <span class="inline-formula">BrCN</span> are more likely to convert <span class="inline-formula">Br</span> to bromide (<span class="inline-formula">Br<sup>−</sup></span>) or form a <span class="inline-formula">C</span>–<span class="inline-formula">Br</span> bonded organic species, as these are the known condensed-phase reactions of <span class="inline-formula">BrCN</span> and would therefore constitute a loss of atmospheric active Br. Thus, further study of the chemistry of <span class="inline-formula">BrCN</span> will be important for diagnosing polar <span class="inline-formula">Br</span> cycling.</p>