Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity

oleh: Valentin Chardonnet, Marcel Hennes, Romain Jarrier, Renaud Delaunay, Nicolas Jaouen, Marion Kuhlmann, Nagitha Ekanayake, Cyril Léveillé, Clemens von Korff Schmising, Daniel Schick, Kelvin Yao, Xuan Liu, Gheorghe S. Chiuzbăian, Jan Lüning, Boris Vodungbo, Emmanuelle Jal

Format: Article
Diterbitkan: AIP Publishing LLC and ACA 2021-05-01

Deskripsi

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( ≃ 310   eV), we were able to probe close to the Fe L3 edge ( 706.8   eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.