Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Parametric study of aluminium-rare earth based composites with improved hydrophobicity using response surface method
oleh: Vipin Kumar Sharma, Vinod Kumar, Ravinder Singh Joshi
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2020-05-01 |
Deskripsi
In the current exploration, the specific wear rate of aluminium hybrid composites with traces amount of rare earth oxides (REOs) using pin-on-disc tribometer have been evaluated. For wear analysis, aluminium hybrid matrix composites (AHMCs) of Al-6061 alloy, with 2.5, 5 and 7.5 wt% of (Al2O3 + SiC) and 0.5, 1.5 and 2.5 wt% CeO2 as REOs particulate reinforcement processed through stir casting route. Hydrophobicity behaviour analysis between the aluminium liquid matrix and Al2O3/SiC reinforcement can be improved by the addition of REOs as measured in terms of contact angle by sessile drop method. For parametric study of specific wear rate using response surface methodology, four different parameters namely reinforcement with different weight percent, sliding speed, load and sliding distance have been analyzed with five different levels. The investigations shows that the quantity of reinforcement with increased amount as well as increasing sliding speed decreased the specific wear rate whereas an increase amount of load as well as sliding distance promotes the specific wear rate of AHMCs with increasing nature. But from ANOVA investigations, the effect of above parameters on sliding wear rate is totally different. It was concluded that sliding distance has more dominating impact on the wear rate of the composites with 59.94%, followed by 16.39% of sliding speed, 10.49% of normal load and 4.9% of REOs reinforcement respectively. Finally the model is validated by conducting the confirmation tests. Statistical analysis has revealed that current wear model is accurate to apply in the tribological applications.