Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Potential of CO2 lasers (10.6 µm) associated with fluorides in inhibiting human enamel erosion
oleh: Thayanne Monteiro RAMOS-OLIVEIRA, Thaysa Monteiro RAMOS, Marcela ESTEVES-OLIVEIRA, Christian APEL, Horst FISCHER, Carlos de Paula EDUARDO, Washington STEAGALL JR, Patricia Moreira de FREITAS
Format: | Article |
---|---|
Diterbitkan: | Sociedade Brasileira de Pesquisa Odontológica 2014-01-01 |
Deskripsi
This in vitro study aimed to investigate the potential of CO2 lasers associated with different fluoride agents in inhibiting enamel erosion. Human enamel samples were randomly divided into 9 groups (n = 12): G1-eroded enamel; G2-APF gel; G3-AmF/NaF gel; G4-AmF/SnF2 solution; G5-CO2 laser (λ = 10.6 µm)+APF gel; G6-CO2 laser+AmF/NaF gel; G7-CO2laser+AmF/SnF2solution; G8-CO2 laser; and G9-sound enamel. The CO2 laser parameters were: 0.45 J/cm2; 6 μs; and 128 Hz. After surface treatment, the samples (except from G9) were immersed in 1% citric acid (pH 4.0, 3 min). Surface microhardness was measured at baseline and after surface softening. The data were statistically analyzed by one-way ANOVA and Tukey’s tests (p < 0.05). G2 (407.6 ± 37.3) presented the highest mean SMH after softening, followed by G3 (407.5 ± 29.8) and G5 (399.7 ± 32.9). Within the fluoride-treated groups, G4 (309.0 ± 24.4) had a significantly lower mean SMH than G3 and G2, which were statistically similar to each other. AmF/NaF and APF application showed potential to protect and control erosion progression in dental enamel, and CO2 laser irradiation at 0.45J/cm2 did not influence its efficacy. CO2 laser irradiation alone under the same conditions could also significantly decrease enamel erosive mineral loss, although at lower levels.