Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells.

oleh: Kimberly M Brothers, Jake D Callaghan, Nicholas A Stella, Julianna M Bachinsky, Mohammed AlHigaylan, Kara L Lehner, Jonathan M Franks, Kira L Lathrop, Elliot Collins, Deanna M Schmitt, Joseph Horzempa, Robert M Q Shanks

Format: Article
Diterbitkan: Public Library of Science (PLoS) 2019-06-01

Deskripsi

Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.