Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation
oleh: Ya-Shuo Li, Yilong Yin, Gongping Yang, Ying Li
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2012-03-01 |
Deskripsi
Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature’s ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.