Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Effective Elasticity Tensor of Fiber-Reinforced Orthorhombic Composite Materials with Fiber Distribution Parallel to Plane
oleh: Aimin Li, Tengfei Zhao, Zhiwen Lan, Mojia Huang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-07-01 |
Deskripsi
An orthogonal composite material <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> with fibers consists of a matrix and orthothombic distribution fibers. In addition to the matrix properties, the fiber properties and the fiber volume fraction, the effective (macroscopic) elastic stress–strain constitutive relation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> is related to the fiber direction distribution. Until now, there have been few papers that give an explicit formula of the macroscopic elastic stress–strain constitutive relation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> with the effect of the fiber direction distribution. Taking the expanded coefficients of the Fourier series as the fiber direction distribution coefficients, we give a formula of the fiber direction distribution parallel to a plane computed through the fiber directions. By the self-consistent estimates, we derive an explicit formula of the macroscopic elastic stress–strain constitutive relation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> with the fiber direction distribution coefficients. Since all tensors are represented in Kelvin notation, the macroscopic elastic stress–strain constitutive relation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> can be derived and computed only by matrix manipulations. To check the explicit formula, we use the FEM computation to obtain the macroscopic elastic stress–strain relation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> for three examples. The computational results of the explicit formula for the three examples are consistent with those of the FEM simulations.