V2-Directed Vaccine-like Antibodies from HIV-1 Infection Identify an Additional K169-Binding Light Chain Motif with Broad ADCC Activity

oleh: Charmaine van Eeden, Constantinos Kurt Wibmer, Cathrine Scheepers, Simone I. Richardson, Molati Nonyane, Bronwen Lambson, Nonhlanhla N. Mkhize, Balakrishnan Vijayakumar, Zizhang Sheng, Sherry Stanfield-Oakley, Jinal N. Bhiman, Valerie Bekker, Tandile Hermanus, Batsirai Mabvakure, Arshad Ismail, M. Anthony Moody, Kevin Wiehe, Nigel Garrett, Salim Abdool Karim, Heini Dirr, Manuel A. Fernandes, Yasien Sayed, Lawrence Shapiro, Guido Ferrari, Barton F. Haynes, Penny L. Moore, Lynn Morris

Format: Article
Diterbitkan: Elsevier 2018-12-01

Deskripsi

Summary: Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif. A cocrystal structure of CAP228-16H bound to a V2 peptide identified a IGLV3-21 gene-encoded DDxD motif that is used to bind K169, with a mechanism that allows CAP228-16H to recognize more globally relevant V2 immunotypes. Overall, these data further our understanding of the development of cross-reactive, V2-binding, antiviral antibodies and effectively expand the human light chain repertoire able to respond to RV144-like immunogens. : V2-directed antibodies from the RV144 vaccine trial correlated with reduced HIV-1 infection risk but exhibited restricted light chain gene usage. Here, van Eeden et al. isolate similar antibodies from an HIV-1-infected individual and identify a third V2-reactive light chain gene, increasing the antibody repertoire potentially elicited by vaccination. Keywords: HIV, V2 antibodies, K169, V2 structure, ED motif, CAP228, CH58, antibody evolution, ADCC, RV144 vaccine response