Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model
oleh: In Young Choi, HoTae Lim, Kenneth Estrellas, Jyothi Mula, Tatiana V. Cohen, Yuanfan Zhang, Christopher J. Donnelly, Jean-Philippe Richard, Yong Jun Kim, Hyesoo Kim, Yasuhiro Kazuki, Mitsuo Oshimura, Hongmei Lisa Li, Akitsu Hotta, Jeffrey Rothstein, Nicholas Maragakis, Kathryn R. Wagner, Gabsang Lee
| Format: | Article |
|---|---|
| Diterbitkan: | Elsevier 2016-06-01 |
Deskripsi
Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our “chemical-compound-based” strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological “dual-SMAD” inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form “rescued” multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human “DMD-in-a-dish” model using hiPSC-based disease modeling.