Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Optimal Evolutionary Dispatch for Integrated Community Energy Systems Considering Uncertainties of Renewable Energy Sources and Internal Loads
oleh: Xinghua Liu, Shenghan Xie, Chen Geng, Jianning Yin, Gaoxi Xiao, Hui Cao
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-06-01 |
Deskripsi
For the future development of integrated energy systems with high penetration of renewable energy, an integrated community energy systems (ICES) dispatch model is proposed including various renewable energy sources and energy conversion units. Energy coupling matrices of ICES based on traditional energy hub (EH) models are constructed. Uncertainties of long-term forecast data of renewable energy sources and internal loads are depicted by multi-interval uncertainty sets (MIUS). To cope with the impacts caused by uncertainties of renewable energy sources and internal loads, the whole dispatch process is divided into two stages. Considering various constraints of ICES, we solved the dispatch model through the improved particle swarm optimization (IPSO) algorithm in the first stage. The optimal evolutionary dispatch is then proposed in the second stage to overcome the evolution and errors of short-term forecast data and obtain the optimal dispatch plan. The effectiveness of the proposed dispatch method is demonstrated using an example considering dramatic uncertainties. Compared with the traditional methods, the proposed dispatch method effectively reduces system operating costs and improves the environmental benefits, which helps to achieve a win-win situation for both energy companies and users.