Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
oleh: C. Xing, C. Liu, C. Liu, C. Liu, C. Liu, C. Ye, J. Xue, H. Wu, X. Ji, J. Ou, Q. Hu
Format: | Article |
---|---|
Diterbitkan: | Copernicus Publications 2024-09-01 |
Deskripsi
<p><span id="page10094"/>The Tibetan Plateau (TP) plays a key role in the regional environment and global climate change; however, the lack of vertical observations of atmospheric species, such as HONO and O<span class="inline-formula"><sub>3</sub></span>, hinders a deeper understanding of the atmospheric chemistry and atmospheric oxidation capacity (AOC) on the TP. In this study, we conducted multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements at Nam Co, the central TP, to observe the vertical profiles of aerosol, water vapor (H<span class="inline-formula"><sub>2</sub></span>O), NO<span class="inline-formula"><sub>2</sub></span>, HONO and O<span class="inline-formula"><sub>3</sub></span> from May to July 2019. In addition to NO<span class="inline-formula"><sub>2</sub></span> mainly exhibiting a Gaussian shape with the maximum value appearing at 300<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mo>-</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="8pt" class="svg-formula" dspmath="mathimg" md5hash="8a3a4cdef683596f3b6214c9e6cb05f1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-10093-2024-ie00001.svg" width="22pt" height="8pt" src="acp-24-10093-2024-ie00001.png"/></svg:svg></span></span>400 m, the other four species all showed an exponential shape and decreased with the increase in height. The maximum values of monthly averaged aerosol (0.17 km<span class="inline-formula"><sup>−1</sup></span>) and O<span class="inline-formula"><sub>3</sub></span> (66.71 ppb) occurred in May, H<span class="inline-formula"><sub>2</sub></span>O (3.68 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>17</sup></span> molec. cm<span class="inline-formula"><sup>−3</sup></span>) and HONO (0.13 ppb) appeared in July, and NO<span class="inline-formula"><sub>2</sub></span> (0.39 ppb) occurred in June at the 200–400 m layer. H<span class="inline-formula"><sub>2</sub></span>O, HONO and O<span class="inline-formula"><sub>3</sub></span> all exhibited a multi-peak pattern, and aerosol appeared to have a bi-peak pattern for its averaged diurnal variations. The averaged vertical profiles of OH production rates from O<span class="inline-formula"><sub>3</sub></span> and HONO all exhibited an exponential shape decreasing with the increase in height, with maximum values of 2.61 and 0.49 ppb h<span class="inline-formula"><sup>−1</sup></span> at the bottom layer, respectively. The total OH production rate contributed by HONO and O<span class="inline-formula"><sub>3</sub></span> on the TP was obviously larger than that in low-altitude areas. In addition, source analysis was conducted for HONO and O<span class="inline-formula"><sub>3</sub></span> at different height layers. The heterogeneous reaction of NO<span class="inline-formula"><sub>2</sub></span> on wet surfaces was a significant source of HONO. The maximum values of HONO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="493c42bdafda293669646c99f86fe0ce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-10093-2024-ie00002.svg" width="8pt" height="14pt" src="acp-24-10093-2024-ie00002.png"/></svg:svg></span></span>NO<span class="inline-formula"><sub>2</sub></span> appeared when H<span class="inline-formula"><sub>2</sub></span>O concentrations were approximately 1.0 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>17</sup></span> molec. cm<span class="inline-formula"><sup>−3</sup></span> and aerosol concentrations were larger than 0.15 km<span class="inline-formula"><sup>−1</sup></span> below 1.0 km. The maximum values were usually accompanied by H<span class="inline-formula"><sub>2</sub></span>O concentrations of 1.0–2.0 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>17</sup></span> molec. cm<span class="inline-formula"><sup>−3</sup></span> and aerosol concentrations greater than 0.02 km<span class="inline-formula"><sup>−1</sup></span> at 1.0–2.0 km. O<span class="inline-formula"><sub>3</sub></span> was potentially sourced from the South Asian subcontinent and Himalayas through long-range transport. Our results contribute to the new understanding of vertical distribution of atmospheric components and explain the strong AOC on the TP.</p>