Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
CRISPR-Cas9 Approach Constructed Engineered <i>Saccharomyces cerevisiae</i> with the Deletion of <i>GPD2</i>, <i>FPS1</i>, and <i>ADH2</i> to Enhance the Production of Ethanol
oleh: Peizhou Yang, Shuying Jiang, Suwei Jiang, Shuhua Lu, Zhi Zheng, Jianchao Chen, Wenjing Wu, Shaotong Jiang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-07-01 |
Deskripsi
Bioethanol plays an important value in renewable liquid fuel. The excessive accumulation of glycerol and organic acids caused the decrease of ethanol content in the process of industrial ethanol production. In this study, the CRISPR-Cas9 approach was used to construct <i>S. cerevisiae</i> engineering strains by the deletion of <i>GPD2</i>, <i>FPS1</i>, and <i>ADH2</i> for the improvement of ethanol production. RNA sequencing and transcriptome analysis were used to investigate the effect of gene deletion on gene expression. The results indicated that engineered <i>S. cerevisiae</i> SCGFA by the simultaneous deletion of <i>GPD2</i>, <i>FPS1</i>, and <i>ADH2</i> produced 23.1 g/L ethanol, which increased by 0.18% in comparison with the wild-type strain with 50 g/L of glucose as substrate. SCGFA strain exhibited the ethanol conversion rate of 0.462 g per g of glucose. In addition, the contents of glycerol, lactic acid, acetic acid, and succinic acid in SCGFA decreased by 22.7, 12.7, 8.1, 19.9, and 20.7% compared with the wild-type strain, respectively. The up-regulated gene enrichment showed glycolysis, fatty acid, and carbon metabolism could affect the ethanol production of SCGFA according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Therefore, the engineering strain SCGFA had great potential in the production of bioethanol.