Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Mini-batch optimization enables training of ODE models on large-scale datasets
oleh: Paul Stapor, Leonard Schmiester, Christoph Wierling, Simon Merkt, Dilan Pathirana, Bodo M. H. Lange, Daniel Weindl, Jan Hasenauer
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2022-01-01 |
Deskripsi
Ordinary differential equation (ODE) models are widely used to understand multiple processes. Here the authors show how the concept of mini-batch optimization can be transferred from the field of Deep Learning to ODE modelling.