Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Алгоритм построения бифуркационной картины нелинейной краевой задачи для уравнений Кармана
oleh: Vasilii A. Gromov
| Format: | Article |
|---|---|
| Diterbitkan: | Igor Sikorsky Kyiv Polytechnic Institute 2017-03-01 |
Deskripsi
В рамках нелинейного обобщённого метода Канторовича предложен новый подход к локализации и анализу особых точек решения нелинейной краевой задачи для уравнений Кармана: решение нелинейной краевой задачи сводится к решению последовательности нелинейных краевых задач для обыкновенных дифференциальных уравнений. Одномерные краевые задачи решаются с помощью метода сведения нелинейной краевой задачи к эквивалентной задаче Коши, в процессе реализации которого строится матрица Фреше, вырожденность которой является необходимым и достаточным условием существования ветвления. Численное построение уравнений разветвления позволяет построить ветви, исходящие из точки бифуркации. Вычислительный эксперимент позволил установить бифуркационную картину для случая уравнения Кармана с обобщенной правой частью: решение характеризуются существованием ветвей первичного и вторичного ветвлений.