Acoustic Backscatter Communication and Power Transfer for Batteryless Wireless Sensors

oleh: Peter Oppermann, Bernd-Christian Renner

Format: Article
Diterbitkan: MDPI AG 2023-03-01

Deskripsi

Sensors for industrial and structural health monitoring are often in shielded and hard-to-reach places. Acoustic wireless power transfer (WPT) and piezoelectric backscatter enable batteryless sensors in such scenarios. Although the low efficiency of WPT demands power-conserving sensor nodes, backscatter communication, which consumes near-zero power, has not yet been combined with WPT. This study reviews the available approaches to acoustic WPT and active and passive acoustic through-metal communication. We design a batteryless and backscattering tag prototype from commercially available components. Analysis of the prototypes reveals that low-power hardware poses additional challenges for communication, i.e., unstable and inaccurate oscillators. Therefore, we implement a software-defined receiver using digital phase-locked loops (DPLLs) to mitigate the effects of oscillator instability. We show that DPLLs enable reliable backscatter communication with inaccurate clocks using simulation and real-world measurements. Our prototype achieves communication at 2 kBs<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> over a distance of 3 m. Furthermore, during transmission, the prototype consumes less than 300 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>W power. At the same time, over 4 mW of power is received through wireless transmission over a distance of 3 m with an efficiency of 2.8%.