Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Segmentation of Brain Images by Optimizing Clustering of Convolution Based Features
oleh: Kumar Vikas
Format: | Article |
---|---|
Diterbitkan: | EDP Sciences 2021-01-01 |
Deskripsi
Brain tumour segmentation aims to separate the various types of tumour tissues like active cells, necrotic core, and edema from normal brain tissues of substantia alba (WM), grey matter (GM), and spinal fluid (CSF). Magnetic Resonance Imaging based brain tumour segmentation studies are attracting more and more attention in recent years thanks to non-invasive imaging and good soft tissue contrast of resonance Imaging (MRI) images. With the event of just about two decades, the ingenious approaches applying computer-aided techniques for segmenting brain tumour are getting more and more mature and coming closer to routine clinical applications. the aim of this paper is to supply a comprehensive overview for MRIbased brain tumour segmentation methods. Firstly, a quick introduction to brain tumours and imaging modalities of brain tumours is given in this proposed research, convolution based optimization. These stepwise step refine the segmentation and improve the classification parameter with the assistance of particle swarmoptimization.