Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Deep Neural Network-Based Guidance Law Using Supervised Learning
oleh: Minjeong Kim, Daseon Hong, Sungsu Park
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2020-11-01 |
Deskripsi
This paper proposes that the deep neural network-based guidance (DNNG) law replace the proportional navigation guidance (PNG) law. This approach is performed by adopting a supervised learning (SL) method using a large amount of simulation data from the missile system with PNG. Then, the proposed DNNG is compared with the PNG, and its performance is evaluated via the hitting rate and the energy function. In addition, the DNN-based only line-of-sight (LOS) rate input guidance (DNNLG) law, in which only the LOS rate is an input variable, is introduced and compared with the PN and DNNG laws. Then, the DNNG and DNNLG laws examine behavior in an initial position other than the training data.