Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles

oleh: Cheng-Wei Tu, Fang-Chang Tsai, Jem-Kun Chen, Huei-Ping Wang, Rong-Ho Lee, Jiawei Zhang, Tao Chen, Chung-Chi Wang, Chih-Feng Huang

Format: Article
Diterbitkan: MDPI AG 2020-11-01

Deskripsi

To afford an intact double network (sample abbr.: DN) hydrogel, two-step crosslinking reactions of poly(2-acrylamido-2-methylpropanesulfonic acid) (i.e., PAMPS first network) and then poly(acrylic acid) (i.e., PAA second network) were conducted both in the presence of crosslinker (<i>N</i>,<i>N</i>′-methylenebisacrylamide (MBAA)). Similar to the two-step processes, different contents of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN: 1, 2, and 3 wt.%) were initially dispersed in the first network solutions and then crosslinked. The TOCN-containing PAMPS first networks subsequently soaked in AA and crosslinker and conducted the second network crosslinking reactions (TOCN was then abbreviated as T for DN samples). As the third step, various (T–)DN hydrogels were then treated with different concentrations of FeCl<sub>3(aq)</sub> solutions (5, 50, 100, and 200 mM). Through incorporations of ferric ions into (T–)DN hydrogels, notably, three purposes are targeted: (i) strengthen the (T–)DN hydrogels through ionic bonding, (ii) significantly render ionic conductivity of hydrogels, and (iii) serve as a catalyst for the forth step to proceed with in situ chemical oxidative polymerizations of pyrroles to afford polypyrrole-containing (sample abbr.: Py) hydrogels [i.e., (T–)Py–DN samples]. The characteristic functional groups of PAMPS, PAA, and Py were confirmed by FT–IR. Uniform microstructures were observed by cryo scanning electron microscopy (cryo-SEM). These results indicated that homogeneous composites of T–Py–DN hydrogels were obtained through the four-step process. All dry samples showed similar thermal degradation behaviors from the thermogravimetric analysis (TGA). The T<sub>2</sub>–Py<sub>5</sub>–DN sample (i.e., containing 2 wt.% TOCN with 5 mM FeCl<sub>3(aq)</sub> treatment) showed the best tensile strength and strain at breaking properties (i.e., σ<sub>Tb</sub> = 450 kPa and ε<sub>Tb</sub> = 106%). With the same compositions, a high conductivity of 3.34 × 10<sup>−3</sup> S/cm was acquired. The tough T<sub>2</sub>–Py<sub>5</sub>–DN hydrogel displayed good conductive reversibility during several “stretching-and-releasing” cycles of 50–100–0%, demonstrating a promising candidate for bioelectronic or biomaterial applications.