Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach

oleh: Mohammad Daneshzand, Sergey N. Makarov, Lucia I. Navarro de Lara, Bastien Guerin, Jennifer McNab, Bruce R. Rosen, Matti S. Hämäläinen, Tommi Raij, Aapo Nummenmaa

Format: Article
Diterbitkan: Elsevier 2021-08-01

Deskripsi

Background: TMS neuronavigation with on-line display of the induced electric field (E-field) has the potential to improve quantitative targeting and dosing of stimulation, but present commercially available solutions are limited by simplified approximations. Objective: Developing a near real-time method for accurate approximation of TMS induced E-fields with subject-specific high-resolution surface-based head models that can be utilized for TMS navigation. Methods: Magnetic dipoles are placed on a closed surface enclosing an MRI-based head model of the subject to define a set of basis functions for the incident and total E-fields that define the subject's Magnetic Stimulation Profile (MSP). The near real-time speed is achieved by recognizing that the total E-field of the coil only depends on the incident E-field and the conductivity boundary geometry. The total E-field for any coil position can be obtained by matching the incident field of the stationary dipole basis set with the incident E-field of the moving coil and applying the same basis coefficients to the total E-field basis functions. Results: Comparison of the MSP-based approximation with an established TMS solver shows great agreement in the E-field amplitude (relative maximum error around 5%) and the spatial distribution patterns (correlation >98%). Computation of the E-field took ~100 ms on a cortical surface mesh with 120k facets. Conclusion: The numerical accuracy and speed of the MSP approximation method make it well suited for a wide range of computational tasks including interactive planning, targeting, dosing, and visualization of the intracranial E-fields for near real-time guidance of coil positioning.