Multiple controls affect arsenite oxidase gene expression in <it>Herminiimonas arsenicoxydans</it>

oleh: Coppée Jean-Yves, Arsène-Ploetze Florence, Lièvremont Didier, Hommais Florence, Goulhen-Chollet Florence, Dillies Marie-Agnès, Sismeiro Odile, Proux Caroline, Cleiss-Arnold Jessica, Koechler Sandrine, Bertin Philippe N

Format: Article
Diterbitkan: BMC 2010-02-01

Deskripsi

<p>Abstract</p> <p>Background</p> <p>Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. <it>Herminiimonas arsenicoxydans </it>has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism.</p> <p>Results</p> <p>In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of <it>H. arsenicoxydans </it>to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn<it>5 </it>transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted <it>aoxR </it>and <it>aoxS </it>genes, showing that the <it>aox </it>operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in <it>rpoN </it>coding for the alternative N sigma factor (σ<sup>54</sup>) of RNA polymerase and in <it>dnaJ </it>coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the <it>rpoN </it>and <it>dnaJ </it>gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the <it>aoxAB </it>operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 σ<sup>54</sup>-dependent promoter motif was identified upstream of <it>aoxAB </it>coding sequences.</p> <p>Conclusion</p> <p>These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in <it>H. arsenicoxydans</it>. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.</p>