Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
oleh: Aaron Robertson
| Format: | Article |
|---|---|
| Diterbitkan: | Discrete Mathematics & Theoretical Computer Science 1999-01-01 |
Deskripsi
We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.