Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission
oleh: R. Yao, G. Li, J. Xu, L. Wang
Format: | Article |
---|---|
Diterbitkan: | Spolecnost pro radioelektronicke inzenyrstvi 2015-09-01 |
Deskripsi
For a two-tier Multiple-Input Multiple-Output (MIMO) cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS) for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR), which proves the effectiveness of the algorithm.