Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
European NO<sub><i>x</i></sub> emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone
oleh: A. J. Visser, K. F. Boersma, K. F. Boersma, L. N. Ganzeveld, M. C. Krol, M. C. Krol
Format: | Article |
---|---|
Diterbitkan: | Copernicus Publications 2019-09-01 |
Deskripsi
<p>Ozone (<span class="inline-formula">O<sub>3</sub></span>) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor group nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="77d908dec763f6fc57cec269f119fb13"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11821-2019-ie00001.svg" width="85pt" height="13pt" src="acp-19-11821-2019-ie00001.png"/></svg:svg></span></span>) contribute to these biases. The goal of this study is to use <span class="inline-formula">NO<sub>2</sub></span> column observations from the Ozone Monitoring Instrument (OMI) satellite sensor to infer top-down <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions in the regional Weather Research and Forecasting model with coupled chemistry (WRF-Chem) and to evaluate the impact on simulated surface <span class="inline-formula">O<sub>3</sub></span> with in situ observations. We first perform a simulation for July 2015 over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of mean ozone concentrations is reproduced satisfactorily. However, the simulated maximum daily 8 h ozone concentration (MDA8 <span class="inline-formula">O<sub>3</sub></span>) is underestimated (mean bias error of <span class="inline-formula">−</span>14.2 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>), and its spread is too low. We subsequently derive satellite-constrained surface <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions using a mass balance approach based on the relative difference between OMI and WRF-Chem <span class="inline-formula">NO<sub>2</sub></span> columns. The method accounts for feedbacks through OH, <span class="inline-formula">NO<sub>2</sub></span>'s dominant daytime oxidant. Our optimized European <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions amount to 0.50 Tg N (for July 2015), which is 0.18 Tg N higher than the bottom-up emissions (which lacked agricultural soil <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions). Much of the increases occur across Europe, in regions where agricultural soil <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions dominate. Our best estimate of soil <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions in July 2015 is 0.1 Tg N, much higher than the bottom-up 0.02 Tg N natural soil <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN). A simulation with satellite-updated <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions reduces the systematic bias between WRF-Chem and OMI <span class="inline-formula">NO<sub>2</sub></span> (slope <span class="inline-formula">=0.98</span>, <span class="inline-formula"><i>r</i><sup>2</sup>=0.84</span>) and reduces the low bias against independent surface <span class="inline-formula">NO<sub>2</sub></span> measurements by 1.1 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (<span class="inline-formula">−56</span> %). Following these <span class="inline-formula">NO<sub><i>x</i></sub></span> emission changes, daytime ozone is strongly affected, since <span class="inline-formula">NO<sub><i>x</i></sub></span> emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>, and increases of <span class="inline-formula">>10</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> are seen in regions with large emission increases. With respect to the initial simulation, MDA8 <span class="inline-formula">O<sub>3</sub></span> has an improved spatial distribution, expressed by an increase in <span class="inline-formula"><i>r</i><sup>2</sup></span> from 0.40 to 0.53, and a decrease of the mean bias by 7.4 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (48 %). Overall, our results highlight the dependence of surface ozone on its precursor <span class="inline-formula">NO<sub><i>x</i></sub></span> and demonstrate that simulations of surface ozone benefit from constraining surface <span class="inline-formula">NO<sub><i>x</i></sub></span> emissions by satellite <span class="inline-formula">NO<sub>2</sub></span> column observations.</p>