Tamed Warping Network for High-Resolution Semantic Video Segmentation

oleh: Songyuan Li, Junyi Feng, Xi Li

Format: Article
Diterbitkan: MDPI AG 2023-09-01

Deskripsi

Recent approaches for fast semantic video segmentation have reduced redundancy by warping feature maps across adjacent frames, greatly speeding up the inference phase. However, the accuracy drops seriously owing to the errors incurred by warping. In this paper, we propose a novel framework and design a simple and effective correction stage after warping. Specifically, we build a non-key-frame CNN, fusing warped context features with current spatial details. Based on the feature fusion, our context feature rectification (CFR) module learns the model’s difference from a per-frame model to correct the warped features. Furthermore, our residual-guided attention (RGA) module utilizes the residual maps in the compressed domain to help CRF focus on error-prone regions. Results on Cityscapes show that the accuracy significantly increases from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>67.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>71.6</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and the speed edges down from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>65.5</mn></mrow></semantics></math></inline-formula> FPS to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>61.8</mn></mrow></semantics></math></inline-formula> FPS at a resolution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1024</mn><mo>×</mo><mn>2048</mn></mrow></semantics></math></inline-formula>. For non-rigid categories, e.g., “human” and “object”, the improvements are even higher than 18 percentage points.