Sugar Matters: Improving In Vivo Clearance Rate of Highly Glycosylated Recombinant Plasma Proteins for Therapeutic Use

oleh: Sacha Zeerleder, Ruchira Engel, Tao Zhang, Dorina Roem, Gerard van Mierlo, Ineke Wagenaar-Bos, Sija Marieke van Ham, Manfred Wuhrer, Diana Wouters, Ilse Jongerius

Format: Article
Diterbitkan: MDPI AG 2021-01-01

Deskripsi

Correct glycosylation of proteins is essential for production of therapeutic proteins as glycosylation is important for protein solubility, stability, half-life and immunogenicity. The heavily glycosylated plasma protein C1-inhibitor (C1-INH) is used in treatment of hereditary angioedema attacks. In this study, we used C1-INH as a model protein to propose an approach to develop recombinant glycoproteins with the desired glycosylation. We produced fully functional recombinant C1-INH in Chinese hamster ovary (CHO) cells. In vivo we observed a biphasic clearance, indicating different glycosylation forms. <i>N</i>-glycan analysis with mass spectrometry indeed demonstrated heterogeneous glycosylation for recombinant C1-INH containing terminal galactose and terminal sialic acid. Using a Ricinus Communis Agglutinin I (RCA<sub>120</sub>) column, we could reduce the relative abundance of terminal galactose and increase the relative abundance of terminal sialic acid. This resulted in a fully active protein with a similar in vivo clearance rate to plasmaderived C1-INH. In summary, we describe the development of a recombinant human glycoprotein using simple screening tools to obtain a product that is similar in function and in vivo clearance rate to its plasma-derived counterpart. The approach used here is of potential use in the development of other therapeutic recombinant human glycoproteins.